Generate Adjective Sentiment Dictionary for Social Media Sentiment Analysis Using Constrained Nonnegative Matrix Factorization
نویسندگان
چکیده
Although sentiment analysis has attracted a lot of research, little work has been done on social media data compared to product and movie reviews. This is due to the low accuracy that results from the more informal writing seen in social media data. Currently, most of sentiment analysis tools on social media choose the lexicon-based approach instead of the machine learning approach because the latter requires the huge challenge of obtaining enough human-labeled training data for extremely large-scale and diverse social opinion data. The lexicon-based approach requires a sentiment dictionary to determine opinion polarity. This dictionary can also provide useful features for any supervised learning method of the machine learning approach. However, many benchmark sentiment dictionaries do not cover the many informal and spoken words used in social media. In addition, they are not able to update frequently to include newly generated words online. In this paper, we present an automatic sentiment dictionary generation method, called Constrained Symmetric Nonnegative Matrix Factorization (CSNMF) algorithm, to assign polarity scores to each word in the dictionary, on a large social media corpus digg.com. Moreover, we will demonstrate our study of Amazon Mechanical Turk (AMT) on social media word polarity, using both the human-labeled dictionaries from AMT and the General Inquirer Lexicon to compare our generated dictionary with. In our experiment, we show that combining links from both WordNet and the corpus to generate sentiment dictionaries does outperform using only one of them, and the words with higher sentiment scores yield better precision. Finally, we conducted a lexicon-based sentiment analysis on human-labeled social comments using our generated sentiment dictionary 1 to show the effectiveness of our method.
منابع مشابه
Sentiment Analysis of Social Networking Data Using Categorized Dictionary
Sentiment analysis is the process of analyzing a person’s perception or belief about a particular subject matter. However, finding correct opinion or interest from multi-facet sentiment data is a tedious task. In this paper, a method to improve the sentiment accuracy by utilizing the concept of categorized dictionary for sentiment classification and analysis is proposed. A categorized dictiona...
متن کاملA Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملSlangSD: Building and Using a Sentiment Dictionary of Slang Words for Short-Text Sentiment Classification
Sentiment in social media is increasingly considered as an important resource for customer segmentation, market understanding, and tackling other socio-economic issues. However, sentiment in social media is difficult to measure since user-generated content is usually short and informal. Although many traditional sentiment analysis methods have been proposed, identifying slang sentiment words re...
متن کاملSentiment analysis methods in Sentiment analysis methods in Persian text: A survey
With the explosive growth of social media such as Twitter, reviews on e-commerce website, and comments on news websites, individuals and organizations are increasingly using opinions in these media for their decision making. Sentiment analysis is one of the techniques used to analyze userschr('39') opinions in recent years. Persian language has specific features and thereby requires unique meth...
متن کاملBuilding a Graded Chinese Sentiment Dictionary Based on Commonsense Knowledge for Sentiment Analysis of Song Lyrics
With the rise of social media, sentiment analysis has become a popular research field in recent years. Sentiment dictionaries are vital for this task; however, there are few available in Chinese. Translated English sentiment dictionaries are often inaccurate or lacking vocabulary. Moreover, many dictionaries provide only binary polarity values or no values at all. In this paper, we integrate se...
متن کامل